Agostic interactions and dissociation in the first layer of water on Pt(111).

نویسندگان

  • Timo Jacob
  • William A Goddard
چکیده

Recent quantum mechanical (QM) calculations for a monolayer of H(2)O on Ru(0001) suggested a novel stable structure with half the waters dissociated. However, different studies on Pt(111) suggested an undissociated bilayer structure in which the outer half of the water has the OH bonds toward the surface rather than the O lone pair. Since water layers on Pt are important in many catalytic processes (e.g., the fuel cell cathode), we calculated the energetics and structure of the first monolayer of water on the Pt(111) surface using QM [periodic slab using density functional calculations (DFT) with the PBE-flavor of exchange-correlation functional]. We find that the fully saturated surface ((2)/(3) ML) has half the water almost parallel to the surface (forming a Pt-O Lewis acid-base bond), whereas the other half are perpendicular to the surface, but with the H down toward the surface (forming a Pt-HO agostic bond). This leads to a net bond energy of 0.60 eV/water = 13.8 kcal/mol (the standard ice model with the H up configuration of the water molecules perpendicular to the surface is less stable by 0.092 eV/water = 2.1 kcal/mol). We examined whether the partial dissociation of water proposed for Ru(0001) could occur on Pt(111). For the saturated water layer ((2)/(3) ML) we find a stable structure with half the H(2)O dissociated (forming Pt-OH and Pt-H covalent bonds), which is less favorable by only 0.066 eV/water = 1.51 kcal/mol. These results confirm the interpretation of combined experimental (XAS, XES, XPS) and theoretical (DFT cluster and periodic including spectrum calculations) studies, which find only the H down undissociated case. We find that the undissociated structure leads to a vertical displacement between the two layers of oxygens of approximately 0.42 A (for both H down and H up). In contrast, the partially dissociated system leads to a flat structure with a separation of the oxygen layers of 0.08 A. Among the partially dissociated systems, we find that all subsurface positions for the dissociated hydrogen are less favorable than adsorbing on top of the free Pt surface atom. Our results suggest that for less than (1)/(3) ML, clustering would be observed rather than ordered monolayer structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECTS OF ALUMINIZING PARAMETERS ON THE MICROSTRUCTURE AND THICKNESS OF PT-ALUMINIDE COATING APPLIED ON A NI-BASE SUPERALLOY, GTD-111

In this research, effects of changes in aluminizing conditions on microstructure of Pt - aluminide coating applied oil a Ni - base superalloy GTD -111, has been studied. A thin layer (i.e.68,#mm ) of Pt was electroplated onto the surface of the .samples, and then they were aluminized by pack cementation technique under various conditions of time, temperature, rate of heating and pack powder com...

متن کامل

Trends in water-promoted oxygen dissociation on the transition metal surfaces from first principles.

Dissociation of O2 into atomic oxygen is a significant route for O2 activation in metal-catalyzed oxidation reactions. In this study, we systematically investigated the mechanisms of O2 dissociation and the promoting role of water on nine transition metal (Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) surfaces. It was found that on clean metal surfaces, the dissociation of O2 was most favorable on Co...

متن کامل

Solution dynamics of agostic interactions in T-shaped Pt(II) complexes from ab initio molecular dynamics simulations.

Transition metal complexes forming agostic interactions have been extensively surveyed. However, the dynamic behaviour of these interactions is less documented though it could be crucial in chemical processes. For this purpose, ab initio molecular dynamics simulations (AIMD) of some representative T-shaped Pt(II) complexes (quantum mechanics) have been performed in an explicit dichloromethane s...

متن کامل

Structure of water layers on hydrogen-covered Pt electrodes

The structure of water layers above hydrogen-covered Pt(111) surfaces at room temperature has been studied by ab initio molecular dynamics simulations based on periodic density functional theory calculations. Fully hydrogen-covered Pt(111) with additionally either a hydrogen vacancy or another hydrogen adatom have been considered. The resulting structures have been analyzed in detail as a funct...

متن کامل

Coverage dependence and hydroperoxyl-mediated pathway of catalytic water formation on Pt (111) surface.

Hydrogen oxidation on Pt (111) surface is modeled by density functional theory (DFT). Previous DFT calculations showed too large O2 dissociation barriers, but we find them highly coverage dependent: when the coverage is low, dissociation barriers close to experimental values (approximately 0.3 eV) are obtained. For the whole reaction, a new pathway involving hydroperoxyl (OOH) intermediate is f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 30  شماره 

صفحات  -

تاریخ انتشار 2004